References [ 25 ]
Day JG (1998) Cryo-conservation of microalgae and cyanobacteria. CryoLetters S1: 7-14.
DOI: none
De Martino A, Meichenin A, Shi J, Pan K & Bowler C (2007) Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions. Journal of Phycology 43: 992-1009.
Moniz MBJ & Kaczmarska I (2010) Barcoding of diatoms: Nuclear encoded ITS revisted. Protist 161: 7-34.
Clark DR, Merrett MJ & Flynn KJ (1999) Utilization of dissolved inorganic carbon (DIC) and the response of the marine flagellate Isochrysis galbana to carbon or nitrogen stress. New Phytologist 144: 463-470.
DOI: none
Chen X, Qiu CE & Shao JZ (2006) Evidence for K+-dependent HCO3- utilization in the marine diatom phaeodactylum tricornutum. Plant Physiology 141: 731-736.
DOI: none
Dixon GK & Merrett MJ (1988) Bicarbonate utilization by the marine diatom Phaeodactylum tricornutum Bohlin. New Phytologist 109: 47-51.
DOI: none
Iglesias-Rodriguez MD & Merrett MJ (1997) Dissolved inorganic carbon utilization and the development of extracellular carbonic anhydrase by the marine diatom Phaeodactylum tricornutum. New Phytologist 135: 163-168.
DOI: none
Clarkson N, Leftley JW, Meldrum DT & Watson JW (1998) An assessment of the cage-culture turbidostat as an alternative algal bioassay. Water Research 32: 1162-1168.
Molloy CJ & Syrett PJ (1988) Effect of light and N deprivation on inhibition of nitrate uptake by urea in microalgae. Journal of Experimental Marine Biology and Ecology 118: 97-101.
DOI: none
John-McKay ME & Colman B (1997) Variation in the occurrence of external carbonic anhydrase among strains of the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 33: 988-990.
DOI: none
Nimer NA, Iglesias-Rodriguez MD & Merrett MJ (1997) Bicarbonate utilization by marine phytoplankton species. Journal of Phycology 33: 625-631.
DOI: none
Lavaud J & Lepetit B (2013) An explanation for the inter-species variability of the photoprotective non-photochemical chlorophyll fluorescence quenching in diatoms. Biochimica & Biophysica Acta 1827: 294-302.
Wong DM & Franz AK (2013) A comparison of lipid storage in Phaeodactylum tricornutum and Tetraselmis suecica using laser scanning confocal microscopy. Journal of Microbiological Methods 95: 122-128.
McLellan MR (1989) Cryopreservation of diatoms. Diatom Research 4: 301-318.
He L, Han X & Yu Z (2014) A rare Phaeodactylum tricornutum cruciform morphotype: Culture conditions, transformation and unique fatty acid characteristics. PLoS ONE 9: e93922.
Schellenberger Costa B, Sachse M, Jungandreas A, Bartulos CR, Gruber A, Jakob T, Kroth PG & Wilhelm C (2013) Aureochrome 1a is involved in the photoacclimation of the diatom Phaeodactylum tricornutum. PLoS ONE 8(9): e74451.
Stanley MS & Callow JA (2007) Whole cell adhesion strength of morphotypes and isolates of Phaeodactylum tricornutum (Bacillariophyceae). European Journal of Phycology 42: 191-197.
Cannell RJP, Kellam SJ, Owsianka AM & Walker JM (1987) Microalgae and cyanobacteria as a source of glycosidase inhibitors. Journal of General Microbiology 133: 1701-1705.
Abe T, Tsuzuki M, Kadokami Y & Miyachi S (1988) Isolation and characterization of temperature-sensitive, high-CO2 requiring mutant of Anacystis nidulans R2 Plant & Cell Physiology 29: 1353-1360.
DOI: none
Buhmann MT, Schulze B, Förderer A, Schleheck D & Kroth PG (2016) Bacteria may induce the secretion of mucin-like proteins by the diatom Phaeodactylum tricornutum. Journal of Phycology 52: 463-474.
Shemesh Z, Leu S, Khozin-Goldberg I, Didi-Cohen S, Zarka A & Boussiba S (2016) Inducible expression of Haematococcus oil globule protein in the diatom Phaeodactylum tricornutum: Association with lipid droplets and enhancement of TAG accumulation under nitrogen starvation. Algal Research 18: 321-331.
Lepetit B, Gélin G, Lepetit M, Sturm S, Vugrinec S, Rogato A, Kroth PG, Falciatore A & Lavaud J (2017) The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis New Phytologist 214: 205-218.
Butler T, Kapoore RV & Vaidyanathan S (2020) Phaeodactylum tricornutum: A diatom cell factory Trends in Biotechnology -: -.
Song Z, Lye GJ & Parker BM (2020) Morphological and biochemical changes in Phaeodactylum tricornutum triggered by culture media: Implications for industrial exploitation Algal Research 47: 101822.
Beirne N, Edmundson S, Gao S, Freeman J & Huesemann M (2023) A streamlined approach to characterize microalgae strains for biomass productivity under dynamic climate simulation conditions Algal Research 72: 103099.
Sequences [ 2 ]
EMBL/Genbank Links
(Bold text = submission by CCAP staff or collaborators)
18S-ITS2
Division/Phylum: Heterokontophyta/Ochrophyta Class: Bacillariophyceae Order: Naviculales

Note: for strains where we have DNA barcodes we can be reasonably confident of identity, however for those not yet sequenced we rely on morphology and the original identification, usually made by the depositor. Although CCAP makes every effort to ensure the correct taxonomic identity of strains, we cannot guarantee that a strain is correctly identified at the species, genus or class levels. On this basis users are responsible for confirming the identity of the strain(s) they receive from us on arrival before starting experiments.
For strain taxonomy we generally use AlgaeBase for algae and Adl et al. (2019) for protists.

Culture media, purity and growth conditions:
Medium: f/2 + Si; Bacteria present; maintained by serial subculture;
Attributes
AuthorityBohlin 1897
IsolatorDroop (1951)
Collection Site Segelskär, Tvärminne, Finland
Notes "T" form; Name confirmed March 2013 (ASSEMBLE); Bowler & De Martino Pt4
Axenicity Status Bacteria present
Area Europe
Country Finland
Environment Marine
GMO No
Group Diatom
In Scope of Nagoya Protocol No
ABS Note Collected pre Nagoya Protocol. No known Nagoya Protocol restrictions for this strain.
Collection Date c 1951
Original Designation Millport 14
Pathogen Not pathogenic: Hazard Class 1
Strain Maintenance Sheet SM_MarineDiatoms15_20.pdf
Toxin Producer Not Toxic / No Data
Type Culture No
Taxonomy WoRMS ID 175584
Equivalent StrainsCCMP2559 (Bowler & De Martino),SAG 1090-6,UTEX 2089,UTEX 646
Other DesignationsSMBA 14

CCAP 1052/6

Phaeodactylum tricornutum


Related Products

f/2+Si Medium<br>CONCENTRATED STOCKS

CCAP MAF2S-C
f/2+Si Medium
CONCENTRATED STOCKS

Non-sterile concentrated stocks to make up 5 litres of f/2+Si medium. f/2+Si medium is used for cul

f/2+Si Medium<br>1 LITRE PREMADE

CCAP MAF2S-P
f/2+Si Medium
1 LITRE PREMADE

1 litre of sterile, ready to use, f/2+Si medium. f/2+Si medium is used for culturing marine diatoms