CCAP prices will be increasing in January 2025, Click Here for more information.
References [ 28 ]
Gachon CMM, Day JG, Campbell CN, Pröschold T, Saxon RJ & Küpper FC (2007) The Culture Collection of Algae and Protozoa (CCAP): A biological resource for protistan genomics Gene 406: 51-57.
Whitton BA & MacArthur K (1967) The action of two toxic quinones on Anacystis nidulans. Archiv für Microbiologie 57: 147-154.
Weber HL & Boeck A (1968) Comparative studies on the regulation of DAHP synthetase activity in blue-green and green algae. Archiv für Microbiologie 61: 159-168.
Rippka R & Cohen-Bazire G (1983) The cyanobacteriales: A legitimate order based on the type strain Cyanobacterium stanieri Annals of Microbiology 134B: 21-36.
Wright SJL, Redhead K & Maudsley H (1981) Acanthamoeba castellanii, a predator of cyanobacteria. Journal of General Microbiology 125: 293-300.
Peschek GA (1983) Proton pump coupled to cytochrome c oxidase in the cyanobacterium Anacystis nidulans. Journal of Bacteriology 153: 539-542.
DOI: none
Renström-Kellner E & Bergman B (1990) Glycolate metabolism in cyanobacteria. IV. Uptake, growth and metabolic pathways. Physiologia Plantarum 78: 285-292.
Echlin P (1964) Intra-cytoplasmic membranous inclusions in the blue-green alga, Anacystis nidulans. Archiv für Microbiologie 49: 267-274.
Noaman NH, Fattah A, Khaleafa M & Zaky SH (2004) Factors affecting antimicrobial activity of Synechococcus leopoliensis Microbiological Research 159: 395-402.
Miller B, Heuser T & Zimmer W (1999) A Synechococcus leopoliensis SAUG 1402-1 operon harboring the 1-deoxyxylulose 5-phosphate synthase gene and two additional open reading frames is functionally involved in the dimethylallyl diphosphate synthesis. FEBS Letters 460: 485-490.
DOI: none
Miller AG, Turpin DH & Canvin DT (1984) Growth and photosynthesis of the cyanobacterium Synechococcus leopoliensis in HCO3--limited chemostats. Plant Physiology 75: 1064-1070.
Mayo WP, Williams TG, Birch DG & Turpin DH (1986) Photosynthetic adaptation by Synechococcus leopoliensis in response to exogenous dissolved inorganic carbon. Plant Physiology 80: 1038-1040.
DOI: none
Gerbling K, Steup M & Latzko E (1985) Fructose-1,6-biphosphatase from Synechococcus leopoliensis. Substrate-dependent dimer - tetramer interconversion. European Journal of Biochemistry 147: 207-215.
Croisetière L, Rouillon R & Carpentier R (2001) A simple mediatorless amperometric method using the cyanobacterium Synechococcus leopoliensis for the detection of phytotoxic pollutants. Applied Microbiology and Biotechnology 56: 261-264.
Rigby CH, Craig SR & Budd K (1980) Phosphate uptake by Synechococcus leopoliensis (Cyanophyceae): Enhancement by calcium ion. Journal of Phycology 16: 389-393.
Martin-Nieto J, Flores E & Herrero A (1992) Biphasic kinetic behaviour of nitrate reductase from heterocystous, nitrogen-fixing cyanobacteria. Plant Physiology 100: 157-163.
DOI: none
Rippka R, Deruelles J, Waterbury JB, Herdman M & Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111: 1-61.
Summons RE, Jahnke LL, Hope JM & Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400: 554-557.
Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA & Bergman B (2005) Diverse taxa of cyanobacteria produce ß-N-methylamino-L-alanine, a neurotoxic amino acid. PNAS 102: 5074-5078.
Yu J, Liberton M, Cliften PF, Head RD, Jacobs JM, Smith RD, Koppenaal DW, Brand JJ & Pakrasi HB (2015) Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Science Reports 5: 8132.
Hayashi S, Itoh K & Suyama K (2011) Growth of the cyanobacterium Synechococcus leopoliensis CCAP 1405/1 on agar media in the presence of heterotrophic bacteria. Microbes and Environments 26: 120-127.
Hayashi S, Itoh K & Suyama K (2015) Genes of Bacillus subtilis 168 that support growth of the cyanobacterium, Synechococcus leopoliensis CCAP 1405/1 on agar media. Microbial Ecology 70: 849-852.
Henson BJ, Hartman L, Watson LE & Barnum SR (2011) Evolution and variation of the nifD and hupL elements in the heterocystous cyanobacteria. International Journal of Systematic and Evolutionary Microbiology 61: 2938-2949.
Guo J, Selby K & Boxall A (2016) Comparing the sensitivity of chlorophytes, cyanobacteria and diatoms to major-use antibiotics. Environmental Toxicology and Chemistry 35: 2587-2596.
Chen X, Schreiber K, Appel J, Makowka A, Fähnrich B, Roettger M, Hajirezaei MR, Sönnichsen FD, Schönheit P, Martin WF & Gutekunst K (2016) The Entner-Doudoroff pathway is an overlooked glycolytic route in cyanobacteria and plants. PNAS 113: 5441-5446.
Golden SS (2018) The international journeys and aliases of Synechococcus elongatus New Zealand Journal of Botany -: -.
Le Page G, Gunnarsson L, Trznadel M, Wedgewood KCA, Baudrot V, Snape J & Tyler CR (2019) Variability in cyanobacteria sensitivity to antibiotics and implications for environmental risk assessment Science of the Total Environment 695: 133804.
Le Page G, Gunnarsson L, Snape J & Tyler CR (2019) Development and Application of a Microplate Assay for Toxicity Testing on Aquatic Cyanobacteria Environmental Toxicology and Chemistry 39: 705-720.
Sequences [ 12 ]
EMBL/Genbank Links
(Bold text = submission by CCAP staff or collaborators)
16S
Division/Phylum: Cyanophyta Class: Cyanophyceae Order: Synechococcales

Note: for strains where we have DNA barcodes we can be reasonably confident of identity, however for those not yet sequenced we rely on morphology and the original identification, usually made by the depositor. Although CCAP makes every effort to ensure the correct taxonomic identity of strains, we cannot guarantee that a strain is correctly identified at the species, genus or class levels. On this basis users are responsible for confirming the identity of the strain(s) they receive from us on arrival before starting experiments.
For strain taxonomy we generally use AlgaeBase for algae and Adl et al. (2019) for protists.

Culture media, purity and growth conditions:
Medium: JM; Bacteria and other organisms present; maintained by serial subculture and cryopreserved; optimum growth temp 40°C, grown at CCAP at 15-20 deg C
Attributes
Authority(Raciborski) Komárek
IsolatorAllen (1954)
Collection Site Waller Creek, Texas, USA
Notes unicellular; previously known as Anacystis nidulans; LC-MS analysis by RGU in 2021 for cylindrospermopsins, microcystins and anatoxins: None Detected.
Axenicity Status Bacteria and other organisms present
Area North America
Country USA
Environment Freshwater
GMO No
Group Cyanobacteria
Pathogen Not pathogenic: Hazard Class 1
Strain Maintenance Sheet SM_FreshwaterCyanobacteria.pdf
Toxin Producer Not Toxic / No Data
Type Culture No
Taxonomy WoRMS ID 616581
Equivalent StrainsATCC 27144,CCALA 188 (CCAO 188),IAM M-6,PCC 6301,SAG 1402-1,UTCC 102,UTEX 625

CCAP 1405/1

Synechococcus leopoliensis


Related Products

Jaworski's Medium (JM)<br>CONCENTRATED STOCKS

CCAP FAJM-C
Jaworski's Medium (JM)
CONCENTRATED STOCKS

Non-sterile concentrated stocks to make up 5 litres of JM medium. Jaworski's Medium is used for cul

Jaworski's Medium (JM)<br>1 LITRE PREMADE

CCAP FAJM-P
Jaworski's Medium (JM)
1 LITRE PREMADE

1 litre of sterile, ready to use, JM medium. Jaworski's Medium is used for culturing freshwater alg