For CCAP prices, click here and select the "Prices" tab.

Product videos

References [ 36 ]
Marques A, Dinh T, Ioakeimidis C, Huys G, Swings J, Verstraete W, Dhont J, Sorgeloos P & Bossier P (2005) Effects of bacteria on Artemia franciscana cultured in different gnotobiotic environments. Applied and Environmental Microbiology 71: 4307-4317.
Segovia M & Berges JA (2005) Effects of inhibitors of protein synthesis and DNA replication on the induction of proteolytic activities, caspase-like activities and cell death in the unicellular chlorophyte Dunaliella tertiolecta. European Journal of Phycology 40: 21-30.
Marques A, Dhont J, Sorgeloos P & Bossier P (2004) Evaluation of different yeast cell wall mutants and microalgae strains as feed for gnotobiotically grown brine shrimp Artemia franciscana. Journal of Experimental Marine Biology and Ecology. 312: 115-136.
Segovia M, Haramaty L, Berges JA & Falkowski PG (2003) Cell death in the unicellular Chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans. Plant Physiology 132: 99-105.
Reay DS, Nedwell DB, Priddle J & Ellis-Evans JC (1999) Temperature dependence of inorganic nitrogen uptake: Reduced affinity for nitrate at suboptimal temperatures in both algae and bacteria. Applied and Environmental Microbiology 65(6): 2577-2584.
DOI: none
Liu H, Kelly MS, Cook EJ, Black K, Orr H, Zhu JX & Dong SL (2007) The effect of diet type on growth and fatty-acid composition of sea urchin larvae, I. Paracentrotus lividus (Lamarck, 1816) (Echinodermata). Aquaculture 264: 247-262.
Liu H, Kelly MS, Cook EJ, Black K, Orr H, Zhu JX & Dong SL (2007) The effect of diet type on growth and fatty acid composition of the sea urchin larvae, II. Psammechinus miliaris (Gmelin). Aquaculture 264: 263-278.
Eppley RW & Coatsworth JL (1966) Culture of the marine phytoplankter, Dunaliella tertiolecta, with light-dark cycles. Archiv für Microbiologie 55: 66-80.
Segovia M & Berges JA (2009) Inhibition of caspase-like activities prevents the appearance of reactive oxygen species and dark-induced apoptosis in the unicellular chlorophyte Dunaliella tertiolecta. Journal of Phycology 45: 1116-1126.
Suggett DJ, Moore CM, Hickman AE & Geider RJ (2009) Interpretation of fast repetition rate (FRR) fluorescence: Signatures of phytoplankton community structure versus physiological state. Marine Ecology - Progress Series 376: 1-19.
Marques A, Thanh TH, Sorgeloos P & Bossier P (2006) Use of microalgae and bacteria to enhance protection of gnotobiotic Artemia against different pathogens. Aquaculture 258: 116-126.
Assuncao P, Jaen-Molina R, Caujape-Castells J, de la Jara A, Carmona L, Freijanes K & Mendoza H (2011) Phylogenetic position of Dunaliella acidophila (Chlorophyceae) based on ITS and rbcL sequences. Journal of Applied Phycology 24: 635-639.
Santin-Montanya I, Sandin-Espana P, Garcia Baudin JM & Coll-Morales J (2007) Optimal growth of Dunaliella primolecta in axenic conditions to assay herbicides. Chemosphere 66: 1315-1322.
Suggett DJ, Oxborough K, Baker NR, MacIntyre HL, Kana TM & Geider RJ (2003) Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton European Journal of Phycology 38: 371-384.
Hellio C & Le Gal Y (1999) Histidase from the unicellular green alga Dunaliella tertiolecta: purification and partial characterization European Journal of Phycology 34: 71-78.
Kelly MS, Hunter AJ, Scholfield CL & McKenzie JD (2000) Morphology and survivorship of larval Psammechinus miliaris (Gmelin) (Echinodermata: Echinoidea) in response to varying food quantity and quality. Aquaculture 183: 223-240.
DOI: none
Aravantinou AF, Theodorakopoulos MA & Manariotis ID (2013) Selection of microalgae for wastewater treatment and potential lipids production. Bioresource Technology 147: 130-134.
Assuncao P, Jaen-Molina R, Caujape-Castells J, de la Jara A, Carmona L, Freijanes K & Mendoza H (2012) Molecular taxonomy of Dunaliella (Chlorophyceae), with a special focus on D. salina: ITS2 sequences revisited with an extensive geographical sampling. Aquatic Biosystems 8: 2.
DOI: none
Toi HT, Boeckx P, Sorgeloos P, Bossier P & Van Stappen G (2014) Co-feeding of microalgae and bacteria may result in increased N assimilation in Artemia as compared to mono-diets, as demonstrated by a 15N isotope uptake laboratory study. Aquaculture 422-423: 109-114.
Aravantinou AF, Tsarpali V, Dailianis S & Manariotis ID (2015) Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicology and Environmental Safety 114: 109-116.
Emami K, Hack E, Nelson A, Brain CM, Lyne FM, Mesbahi E, Day JG & Caldwell GS (2015) Proteomic-based biotyping reveals hidden diversity within a microalgae culture collection: An example using Dunaliella. Scientific Reports 5: 10036.
Omairi T & Wainwright M (2015) Fluorescent minerals - A potential source of UV protection and visible light for the growth of green algae and cyanobacteria in extreme cosmic environments. Life Sciences in Space Research 6: 87-91.
Segovia M, Mata MT, Palma A, García-Gómez C, Lorenzo MR, Rivera A & Figueroa FL (2015) Dunaliella tertiolecta (Chlorophyta) avoids cell death under ultraviolet radiation (UVR) by triggering alternative photoprotective mechanisms. Photochemistry and Photobiology 91: 1389-1402.
Slocombe SP, Zhang QY, Ross M, Anderson A, Thomas NJ, Lapresa A, Rad Menéndez C, Campbell CN, Black KD, Stanley MS & Day JG (2015) Unlocking nature's treasure-chest: Screening for oleaginous algae. Scientific Reports 5: 09844.
García-Gómez C, Parages ML, Jiménez C, Palma A, Mata MT & Segovia M (2012) Cell survival after UV radiation stress in the unicellular chlorophyte Dunaliella tertiolecta is mediated by DNA repair and MAPK phosphorylation. Journal of Experimental Botany 63: 5259-5274.
García-Gómez C, Mata MT, Van Breusegem F & Segovia M (2016) Low-steady-state metabolism induced by elevated CO2 increases resilience to UV radiation in the unicellular green-algae Dunaliella tertiolecta. Environmental and Experimental Botany 132: 163-174.
Harbi K, Makridis P, Koukoumis C, Papadionysiou M, Vgenis T, Kornaros M, Ntaikou I, Giokas S & Dailianis S (2017) Evaluation of a battery of marine species-based bioassays against raw and treated municipal wastewaters. Journal of Hazardous Materials 321: 537-546.
Haponska M, Clavero E, Salvadó J, Farriol X & Torras C (2018) Pilot scale dewatering of Chlorella sorokiniana and Dunaliella tertiolecta by sedimentation followed by dynamic filtration Algal Research 33: 118-124.
Singh P, Khadim R, Singh AK, Singh U, Maurya P, Tiwari A & Asthana R (2018) Biochemical and physiological characterization of a halotolerant Dunaliella salina isolated from hypersaline Sambhar Lake, India Journal of Phycology -: -.
Clark MS, Suckling CC, Cavallo A, Mackenzie CL, Thorne MAS, Davies AJ & Peck LS (2019) Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris Scientific Reports 9: 952.
Guamán-Guevara F, Austin H, Hicks N, Streeter R & Austin WEN (2019) Impacts of ocean acidification on intertidal benthic foraminiferal growth and calcification PLoS ONE 14: e0220046.
Charalampous N, Grammatikopoulos G, Kourmentza C, Kornaros M & Dailianis S (2019) Effects of Burkholderia thailandensis rhamnolipids on the unicellular algae Dunaliella tertiolecta Ecotoxicology and Environmental Safety 182: 109413.
Coppock RL, Galloway TS, Cole M, Fileman ES, Queirós AM & Lindeque PK (2019) Microplastics alter feeding selectivity and faecal density in the copepod, Calanus helgolandicus Science of the Total Environment 687: 780-789.
Hughes AH, Magot F, Tawfike A, Rad-Menéndez C, Thomas N, Young LC, Stucchi L, Carettoni D, Stanley MS, Edrada-Ebel R & Duncan KR (2021) Exploring the chemical space of macro- and micro- algae using comparative metabolomics Microorganisms 9: 311.
Hughes AH, Magot F, Tawfike AF, Rad Menéndez C, Thomas N, Young LC, Stucchi L, Carettoni D, Stanley MS, Edrada-EBel R & Duncan KR (2021) Exploring the chemical space of macro- and micro-algae using comparative metabolomics. Microorganisms 9: 311.
Liu C, Huang D, Zhuo X, Feng J, Wen X, Liao Z, Wu R, Hu Z, Lou S & Li H (2023) Elevated accumulation of lutein and zeaxanthin in a novel high-biomass strain Dunaliella sp. ZP-1 through EMS mutagenesis. Biotechnology for Biofuels and Bioproducts -: -.
Sequences [ 6 ]
EMBL/Genbank Links
(Bold text = submission by CCAP staff or collaborators)
18S-28S
Division/Phylum: Chlorophyta Class: Chlorophyceae Order: Chlamydomonadales

Note: for strains where we have DNA barcodes we can be reasonably confident of identity, however for those not yet sequenced we rely on morphology and the original identification, usually made by the depositor. Although CCAP makes every effort to ensure the correct taxonomic identity of strains, we cannot guarantee that a strain is correctly identified at the species, genus or class levels. On this basis users are responsible for confirming the identity of the strain(s) they receive from us on arrival before starting experiments.
For strain taxonomy we generally use AlgaeBase for algae and Adl et al. (2019) for protists.

Culture media, purity and growth conditions:
Medium: f/2; Axenic; maintained by serial subculture and cryopreserved;
Attributes
AuthorityButcher 1959
IsolatorFoyn (1928 or earlier)
Collection Site Oslo Fjord, Norway
Notes Starr Indiana 999; Treated with antibiotics by depositor prior to receipt.
Axenicity Status Axenic
Area Europe
Country Norway
Environment Brackish
GMO No
In Scope of Nagoya Protocol No
ABS Note Collected pre Nagoya Protocol. No known Nagoya Protocol restrictions for this strain.
Collection Date pre 1928
Original Designation Chlamydomonas III
Pathogen Not pathogenic: Hazard Class 1
Strain Maintenance Sheet SM_Dunaliella.pdf
Toxin Producer Not Toxic / No Data
Type Culture Yes
Taxonomy WoRMS ID 178590
Equivalent StrainsPlymouth 83

CCAP 19/6B

Dunaliella tertiolecta


Related Products

f/2 Medium<br>CONCENTRATED STOCKS

CCAP MAF2-C
f/2 Medium
CONCENTRATED STOCKS

Non-sterile concentrated stocks to make up 5 litres of f/2 medium. f/2 medium is used for culturing

f/2 Medium<br>1 LITRE PREMADE

CCAP MAF2-P
f/2 Medium
1 LITRE PREMADE

1 litre of sterile, ready to use, f/2 medium. f/2 medium is used for culturing marine algae. Click

f/2+Si Medium<br>CONCENTRATED STOCKS

CCAP MAF2S-C
f/2+Si Medium
CONCENTRATED STOCKS

Non-sterile concentrated stocks to make up 5 litres of f/2+Si medium. f/2+Si medium is used for cul

f/2+Si Medium<br>1 LITRE PREMADE

CCAP MAF2S-P
f/2+Si Medium
1 LITRE PREMADE

1 litre of sterile, ready to use, f/2+Si medium. f/2+Si medium is used for culturing marine diatoms

f/2 Quad Medium<br>CONCENTRATED STOCKS

CCAP MAF2Q-C
f/2 Quad Medium
CONCENTRATED STOCKS

Non-sterile concentrated stocks to make up 5 litres of f/2 medium. f/2 Quad medium contains 4x the

f/2 Quad Medium<br>1 LITRE PREMADE

CCAP MAF2Q-P
f/2 Quad Medium
1 LITRE PREMADE

1 litre of sterile, ready to use, f/2 Quad medium. f/2 Quad medium contains 4x the standard f/2 nit